On a Circle Containing the Incenters of Tangential Quadrilaterals

نویسندگان

  • Albrecht Hess
  • A. Hess
چکیده

When we fix one side and draw different tangential quadrilaterals having the same side lengths but different angles we observe that their incenters lie on a circle. Based on a known formula expressing the incircle radius of a tangential quadrilateral by its tangent lengths, some older results will be presented in a new light and the equation of the before mentioned circle will appear. This circle encodes information about tangential and bicentric quadrilaterals that leads to an apparently new characterization of tangential quadrilaterals. Curiously enough, no trigonometric formulae are needed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angle and Circle Characterizations of Tangential Quadrilaterals

We prove five necessary and sufficient conditions for a convex quadrilateral to have an incircle that concerns angles or circles.

متن کامل

Characterizations of Bicentric Quadrilaterals

We will prove two conditions for a tangential quadrilateral to be cyclic. According to one of these, a tangential quadrilateral is cyclic if and only if its Newton line is perpendicular to the Newton line of its contact quadrilateral.

متن کامل

Incenter Circles , Chromogeometry , and the Omega Triangle

Chromogeometry brings together planar Euclidean geometry, here called blue geometry, and two relativistic geometries, called red and green. We show that if a triangle has four blue Incenters and four red Incenters, then these eight points lie on a green circle, whose center is the green Orthocenter of the triangle, and similarly for the other colours. Tangents to the incenter circles yield inte...

متن کامل

A New Proof of Yun’s Inequality for Bicentric Quadrilaterals

We give a new proof of a recent inequality for bicentric quadrilaterals that is an extension of the Euler-like inequality R ≥ √ 2r. A bicentric quadrilateral ABCD is a convex quadrilateral that has both an incircle and a circumcircle. In [6], Zhang Yun called these “double circle quadrilaterals” and proved that

متن کامل

More Characterizations of Tangential Quadrilaterals

In this paper we will prove several not so well known conditions for a quadrilateral to have an incircle. Four of these are different excircle versions of the characterizations due to Wu and Vaynshtejn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014